

# Mathematics Specialist Units 3,4 Test 3 2019

Calculator Assumed Vector Calculus

STUDENT'S NAME

SOLUTIONS

**DATE**: Wednesday 15<sup>th</sup> May

TIME: 55 minutes

MARKS: 54

**INSTRUCTIONS:** 

Standard Items:

Pens, pencils, drawing templates, eraser

Special Items:

Three calculators, notes on one side of a single A4 page (these notes to be handed in with this

assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

Intentional blank page

### 1. (12 marks)

Consider the following system of equations:

$$x + y + z = 2$$
  
 $x + 2y + (k-5)z = 2$   
 $3x + 2y + (k^2 + 3)z = k + 9$ 

(a) Represent this system as an augmented matrix and reduce it to row-echelon form. [3]

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 2 & R-5 & 2 \\ 3 & 2 & R+3 & R+9 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ -1 & 0 & R-7 & -2 \\ 1 & 0 & R+1 & R+5 \end{bmatrix} R2-2R1$$

$$\begin{bmatrix} 1 & 1 & 2 \\ R+1 & R+5 \end{bmatrix} R3-2R1$$

$$\begin{bmatrix} 1 & 1 & 2 \\ -1 & 0 & R-7 & -2 \\ 0 & 0 & R+R-6 & R+3 \end{bmatrix} R2+R3$$

(b) Determine the value/s of k for which the system will have

(i) no solution 
$$k^2 + k - 6 = 0$$
  $k + 3 \neq 0$  [3]  $(k + 3)(k - 2) = 0$   $k \neq -3$   $k = -3, 2$   $k = 2$ 

(ii) a unique solution 
$$k^{2} + k - 6 \neq 0$$

$$k \neq 2, -3$$
 [2]

(iii) infinitely many solutions 
$$k^2 + k - 6 = 0$$
  $k + 3 = 0$  [2]  $k = 2, -3$   $k = -3$ 

(c) For the value of k obtained in (b)(iii), explain why the system of equations has infinitely many solutions. [2]

THERE IS A COMMON LINE OF INTERSECTION

OF THE 3 PLANES.

## 2. (10 marks)

As part of a stunt in a movie, a car is driven off a cliff 80 metres high at a horizontal speed of 20 m/sec. Assume acceleration due to gravity is 9.8 m/sec<sup>2</sup>. Determine each of the following using vector calculus:

(a) the velocity vector and the displacement vector

$$t = 0$$
 $r = 80j$ 
 $v = 20i$ 
 $a = -9.8j$ 

$$20i = 0 + c$$
 $v = 20i - 9.8tj$ 
 $r = 20ti - 9.8t^2 + c$ 

15 = -9.8t + C

$$80j = 0 - 0 + e$$

$$r = 20ti + (80 - 4.9t^2)j$$

(b) when the car hits the ground

wits the ground [2]
$$80 - 4.9t^{2} = 0$$

$$t = 4.04 \text{ sec}$$

(c) how far from the edge of the cliff the car hits the ground  $20 \times 4.04 = 80.8$ 

[4]

(d) the speed of the car when it hits the ground V(4.04) = 20i - 39.6i SPEED = 44.4 m/sec

(e) the angle of travel at the instant the car hits the ground

[1]

## 3. (2**0** marks)

The position of a small body at any time t seconds is given by

$$\mathbf{r}(t) = 24\sin\left(\frac{\pi t}{6}\right)\mathbf{i} + 24\cos\left(\frac{\pi t}{6}\right)\mathbf{j}, \ t \ge 0.$$

(a) Determine an expression for the velocity v(t) of the body.

$$v(t) = 4\pi \cos \pi t - 4\pi \sin \pi t$$

(b) What is the speed of the body when t = 4, and what angle to the x-axis is the body moving at this instant?

$$v(4) = 4\pi \cos \frac{2\pi}{3} - 4\pi \sin \frac{2\pi}{3}$$

$$= 4\pi \left(-\frac{1}{2}\right) - 4\pi \times \frac{53}{2}$$

$$= -2\pi - 253\pi$$

(c) Determine the distance of the body from (0,0) at any time t, and interpret this result in terms of the path described by the body. [3]

$$x = 24 \sin \frac{\pi t}{6}$$
  $y = 24 \cos \frac{\pi t}{6}$   $\frac{x^2}{24^2} = \sin^2 \frac{\pi t}{6}$   $\frac{y^2}{24^2} = \cos^2 \frac{\pi t}{6}$ 

$$\sin^2 0 + \cos^2 0 = 1$$
-: RADIUS = 24 (CENTRE OF CIRCLE (0,0))
$$\frac{\chi^2}{24^2} + \frac{y^2}{24^2} = 1$$

$$\chi^2 + y^2 = 24^2$$
 CIRCULAR

(d) Using the result of (c), determine the direction of movement of the body.





(e) Determine  $r(t) \cdot v(t)$  [2]  $\begin{pmatrix} 24 & \sin \frac{\pi t}{6} \\ 24 & \cos \frac{\pi t}{6} \end{pmatrix} \cdot \begin{pmatrix} 4\pi & \cos \frac{\pi t}{6} \\ -4\pi & \sin \frac{\pi t}{6} \end{pmatrix}$ 

[2]

[2]

[4] <sub>A</sub>

(f) Explain the significance of the answer to (e).

[2]

- . Y PERPENDICULAR TO V
- . V TANGENT TO CIRCLE
- (g) Determine  $\int_0^2 v(t)dt$  and interpret the answer.

[3]

$$\begin{bmatrix}
 24 \sin \left( \frac{\pi}{6} \right) i + 24 \cos \left( \frac{\pi}{6} \right) i \\
 = \left( \frac{12 \sqrt{3}}{12} \right) - \left( \frac{0}{24} \right)
 = 12 \sqrt{3} i - 12 i$$

DISPLACEMENT VECTOR FROM Y(0) TO Y(2)

(h) Explain why  $\int_0^T |v(t)| dt > \int_0^T v(t) dt$  for all T > 0.

[2]

WHICH IS GREATER THAN CHORD LENGTH

## 4. (12 marks)

The acceleration of a particle at time t seconds is given by a(t) = -4i + 2tj, where distances are measured in centimetres. At t = 0 the particle is at the origin and has a velocity v(t) = 2i + j

- (a) Determine the velocity of the particle when t = 2  $v(t) = -4ti + t^{2}j + c$  2i + j = 0 + 0 + c  $v(t) = (2-4t)i + (t^{2}+i)j$  v(2) = -6i + 5j[2]
- (b) Determine the position of the particle when it is moving parallel to the vertical axis [4]  $\gamma(+) = (2t 2t^2)i + (\frac{t^3}{3} + t)j + c$   $\gamma(+) = (2t 2t^2)i + (\frac{t^3}{3} + t)j$

$$v(t) = (2-4t)i + (t^2+1)j$$

$$2-4t = 0$$

$$\frac{1}{2} = t$$

$$r\left(\frac{1}{2}\right) = 0.5i + \frac{B}{24} \delta$$

(c) Explain why the particle can never move parallel to the horizontal axis

$$t^2 + 1 = 0$$

$$t^2 = -1$$

[2]



(e) On the axes above sketch v(0.5)

[2]